Steven H. LevensónOF
Vice-Presideht, Development A
HomeFed Corporation
1903 Wright Place, Suite 220
Carlsbad, CA 92008

Subject: Otay Ranch Village 8 West Development Area C Acoustical Assessment

Dear Mr. Levenson:
Dudek has completed this site-specific acoustical assessment for the proposed Village 8 West (V8W) Parcel C portion (Project) of the Otay Ranch Project located in the City of Chula Vista, California (City). The Project plans a total of two hundred sixty seven (267) one- and two-bedroom units spread across six (6) 3 and 4 -story tuck-under buildings, and a free-standing club/leasing building with a pool house. In total, four hundred nineteen (419) parking spaces are expected on-site. This letter report includes response to received City comments (via its consultant Eilar \& Associates) per its review of the original acoustical assessment prepared on February 10, 2022.

This letter report includes exterior and exterior-to-interior noise analyses for sample occupied units of the proposed complex of multi-family homes and is intended to comply with mitigation measures 5.5-3 and 5.5-7 as appearing in the Otay Ranch Village 8 West Sectional Planning Area Plan and Tentative Map Mitigation Monitoring and Reporting Program [MMRP/EIR document]. These mitigation measures are reproduced as follows:
5.5-3 Site-Specific Acoustic Analysis - Multi-family Residences. Concurrent with design review and prior to the approval of building permits for multi-family areas where first and/or second floor exterior noise levels exceed 60 dBA CNEL and/or where required outdoor area (patios or balconies) noise levels exceed 65 dBA CNEL (Planning Areas $\mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}, \mathrm{H} 1, \mathrm{H} 2, \mathrm{I}, \mathrm{J}, \mathrm{L}, \mathrm{M}$, and O), the applicant shall prepare an acoustical analysis demonstrating compliance with California's Title 24 Interior Noise Standards (i.e., 45 dBA CNEL) and the City's Exterior Land Use/Noise Compatibility Guidelines for outdoor use areas (i.e., 65 dBA CNEL). Design-level architectural plans will be available during design review and will permit the accurate calculation of transmissions loss for habitable rooms. For these areas, it may be necessary for the windows to be able to remain closed to ensure that interior noise levels meet the interior standard of 45 dBA CNEL. Consequently, the design for buildings in these areas may need to include a ventilation or air conditioning system to provide a habitable interior environment with the windows closed based on the result on the interior acoustical analysis.
5.5-7 Shielded Private Outdoor Usable Space for Town Center Residences. Private usable outdoor space for new residential or commercial development such as patios, balconies, or outdoor dining areas in the Town Center shall be located or protected from noise to ensure noise levels are below 65 dB CNEL. The proposed plan for private residential open space shall be designed to the satisfaction of the City Engineer prior to design review.

In summary, and based on Project design information to date, Dudek has determined that the sound insulation performance of the planned residential unit exterior facades (composed of wall assemblies, windows, and
patio/batcony doors-shoutd be sufficient for yielding an interior background sound level of 45 dBA CNEL or less within occupied spaces such as living rooms and bedrooms. A total of sixty-three (63) balconies from multiple floors of plannedresidentialunits that face the proposed major roadways (La Media Parkway and Main Street Westbound) are expected to experience future roadway traffic noise in excess of 65 dBA CNEL, and would thus need acoustical upgrading inthe formof'solid acrylic sheeting (or comparably performing material/assembly alternative with respect to sound insulation) added as al sound-blocking layer to the planned 42"-tall square-tubed metal railings.

1 Introduction

1.1 Acoustical Fundamentals

Although the terms may be used interchangeably in the right context, "sound" is defined as any gas or fluid pressure variation detected by the human ear, and "noise" is unwanted sound. The preferred unit for measuring sound is the decibel (dB), which by way of expressing the ratio of sound pressures to a reference value logarithmically enables a wide range of audible sound to be evaluated and discussed conveniently. On the low end of this range, zero dB is not the absence of sound energy, but instead corresponds approximately to the threshold of average healthy human hearing; and, on the upper end, 120-140 dB corresponds to an average person's threshold of pain.

The human ear is not equally responsive to all frequencies of the audible sound spectrum. An electronic filter is normally used when taking noise measurements that de-emphasizes certain frequencies in a manner that mimics the human ear's response to sound; this method is referred to as A-weighting. Sound levels expressed under the Aweighted system are sometimes designated dBA. All sound levels discussed in this report are A-weighted.

The equivalent continuous sound level ($L_{e q}$) is a single dB value which, if held constant during the specified time period, would represent the same total acoustical energy of a fluctuating noise level over that same time period. Leq values are commonly expressed for periods of one hour, but longer or shorter time periods may be specified.

The noise descriptor Community Noise Equivalent Level (CNEL) is typically used when describing community noise. CNEL energy-averages the varying sound levels occurring over a 24 -hour period, but imparts a 10-decibel penalty to sound occurring between the hours of 10:00 p.m.-7:00 a.m. and a 5-dB penalty for noise between the hours of 7:00-10:00 p.m. as a means to account for increased noise sensitivity during nighttime and evening hours, respectively.

Additional common acoustical descriptors and terms that may assist the reader in framing the evaluation and discussion of noise in this report are provided in Appendix A.

1.2 City of Chula Vista Standards

The City of Chula Vista General Plan Noise Element indicates that the maximum allowable exterior noise level for new residential developments is a Community Noise Equivalent Level (CNEL) of 65 A-weighted decibels (dBA) (City of Chula Vista 2005). Consistent with the California Building Code (CBC, Part 2, Title 24, California Code of Regulations) that stipulates "interior noise levels attributable to exterior sources shall not exceed 45 dB in any habitable room," the City of Chula Vista also requires that interior noise levels not exceed a CNEL of 45 dB within residences.

Typically, with the windows open, building shells provide approximately 12-18 dB of noise reduction (OPR 2017). Therefore, rooms exposed to an exterior CNEL greater than 60 dB could result in an interior CNEL greater than 45 dB .

2.1 Estimating Roadway Traffic Noise

The exterior noise analysis made use of the Federal Highway Administration (FHWA) Traffic Noise Model (TNM, version 2.5) (FHWA 2004) to predict future traffic noise exposure levels at multiple representative façade and balcony positions associated with the six-building project. Input data for the TNM modeling included the following: average daily traffic (ADT) volumes, vehicle speeds, and proportions of vehicle types. Year 2030 build-out ADT, representing an update from similar quantities presented in the V8W EIR, relied upon information from the December $9^{\text {th }}$ dated "Village 8 West - Trip Generation Analysis and Internal ADT Estimation" memorandum (Chen Ryan 2019).

The future modeled traffic speed, forty miles per hour (40 mph), was assumed to be the anticipated speed limit for future roads. The truck percentages used in the noise model for existing and future scenarios on existing and future arterials were 2.0% medium trucks and 2.0% heavy trucks. This truck mix is based on vehicle surveys conducted for a number of similar roads in Chula Vista and San Diego County that allow truck traffic.

As part of the CNEL calculation process, based on typical travel patterns, the analysis assumed the average hourly traffic volume is approximately equal to 10% of the ADT. 10% of the ADT is generally accepted to be roughly equivalent to the worst-case hourly traffic volume; using this value in the noise model results in an average hourly equivalent noise level approximately equal to the CNEL for the corresponding ADT and actual hourly traffic distribution. Thus, this relationship results in a CNEL value that is representative of traffic noise resulting from typical daytime, evening and nighttime traffic distribution.

2.2 Estimating Interior Background Sound Level

An interior background noise analysis of habitable rooms with facades directly exposed to noise emission from nearby flows of roadway traffic was conducted by way arithmetically subtracting the façade's estimated net sound transmission class (STC) rating from the predicted exterior traffic noise level. By way of example, if the exterior noise level outside of a bedroom façade is 66 dBA CNEL, and the estimated net STC rating for the façade is 32 , the expected interior background sound level would be 34 dBA CNEL and thus compliant with the aforementioned City and CBC standards. In summary, this technique emulates the U.S. Department of Housing and Urban Development (HUD) Noise Guidebook methodology for addressing exterior traffic noise (HUD 2009) intrusion to occupied interior spaces.

The STC rating of a single homogeneous construction element or assembly such as a wall, window, or door is derived from sound transmission loss (TL) values at one-third octave band center frequency (OBCF) that fit a standardized "curve" (within allowable tolerances) for the rating value. These TL values are typically the results of laboratory tests of the material or assembly. Because exterior facades of an inhabited building often include a combination of windows and doors that represent penetrations to an otherwise solid and uniform wall, a composite STC rating must
be calculated to represent overall exterior-to-interior sound insulating performance of the combination. The calculation considers the areas and individual TL values of each façade component (wall, windows, doors, and unobstructed openings), which results in a set of composite TL values from which an STC rating can be derived. (As an approximation, the STC rating number is the same TL value at 500 Hz .) This calculation of a net STC rating for the façade makes ithossible for a combination of components, some of which (e.g., windows) may individually appear inadequate to provide the needed noise reduction, to "on average" yield a satisfactory result since it relies on the contribution of the wall assembly and its typically high STC rating.

3 Exterior Noise Analysis Results

3.1 Roadway Traffic Noise

Traffic noise modeling was performed using the same traffic volumes as appearing in Figure 1 (Internal Average Daily Traffic Volumes) of the aforementioned December 9, 2019 Chen Ryan traffic analysis memo. Table 1 shows traffic volume inputs used in modeling based off the traffic analysis memo.

Table 1: Selected Traffic Noise Model (version 2.5) Input Parameters

Road Segment	ADT	10% ADT	Lane Split	Number of Cars	Number of Medium Trucks	Number of Heavy Trucks
Main Street	44908	4491	2245	2156	45	45
La Media Road	38000	3800	1900	1824	38	38

ADT = average daily traffic; N/A = not applicable

Detailed site plan information provided by Hunsaker \& Associates San Diego was utilized to properly depict roadway segments (La Media Parkway northbound and Main Street westbound) and the facades, balconies, patios, and public outdoor use areas. Representative consideration of proposed topography was also included in the traffic noise model setup, as was the presence of retaining walls located around the Project parcels. Figure 1 of this document below shows a plan view of the Project tagged with pinpoints of open areas and representative modeled receivers near the street-facing facades of the six (6) Project buildings.

Sources: Hunsaker 2021, Dudek 2022
Figure 1. Plan View of Project Site and Tagged Representative Receptor Locations of the Traffic Noise Predictive Analysis ($\mathrm{OS}=$ open space; $\mathrm{M}=$ modeled residential unit exterior façade)

Source: Dudek 2022

Figure 2. Isometric View (looking North) of the Traffic Noise Model Developed for the Project Exterior Noise Analysis with Sample Modeled Project Features and Receptor Locations

Table 2 presents the predicted exterior noise levels at the studied nine (9) representative receptor locations appearing in both Figures 1 and 2. Bold values displayed in Table 2 are those that exceed 60 dBA CNEL, and bold italicized values represent predictions that exceed 65 dBA CNEL. Detailed input and output information from the TNM prediction model that supports these Table 2 values appear in Appendix B.

Table 2. Predicted Exterior Noise Levels due to nearby Future Roadway Traffic

Project Building		Modeled Receiver Location (see Figure 1 or Figure 2)		
		1	2	3
		69.8	53.7	n / a
3	2 nd	70.1	61.1	n / a
3	3rd	69.8	61.1	n / a
3	4th	68.6	61.2	n / a
4	1st	70.1	68.9	62.6
4	2nd	70.1	69.4	64.4

Table 2. Predicted Exterior Noise Levels due to nearby Future Roadway Traffic

Predicted exterior sound levels presented in Table 2 that are higher than 60 dBA CNEL indicate locations where an exterior-to-interior noise study should be performed for the proximate occupied residential unit. Where predicted exterior noise levels exceed 65 dBA CNEL proximate to a first-floor patio, upper-floor balcony, or other usable outdoor space (e.g., open space or pool), such a location would need localized noise mitigation to yield an outdoor level compliant with the City's 65 dBA CNEL standard. Based on the predicted values shown in Table 2 that exceed 65 dBA CNEL, Figure 3 reproduces Figure 1 with added shaded regions to visually indicated where upper-floor balcony noise mitigation is anticipated.

Dudek understands that first-floor patios will be enclosed with stucco walls that are to be 36 " tall above local grade. Because the local grade elevation at the boundaries of these patios tends to be several feet higher than the elevation of the nearby roadway segment grades, these 3 -foot tall stucco walls are capable of reducing nearby roadway traffic noise level exposures at seated patio occupants due to barrier insertion losses (i.e., wall intervention of direct sound paths). Additionally, acoustical ground absorption attributed to nearby turf-covered easements between these enclosed patio areas and the nearby roadway traffic noise sources would help provide additional noise reduction. Thus, in combination, these noise reducing effects would be expected to yield the needed $4-5 \mathrm{~dB}$ of sound abatement at modeled sample first floor patio receptors shown in Table 2 and yield exterior noise levels that would be compliant with the 65 dBA CNEL standard.

Sources: Hunsaker 2021, Dudek 2022
Figure 3. Plan View of Project Site (anticipated exterior noise levels > 65 dBA CNEL at building facades shaded in orange, callouts show prediction model geographic locations)

Table 3 identifies the specific residential units that, based on the predicted noise levels of Table 2, would need exterior noise reduction at the usable balconies so as to lower predicted exterior noise levels to below 65 dBA CNEL and thus comply with the City's standard. A total of sixty-three (63) units with apparent usable balconies are represented by Table 3.

Table 3. Summary of Proposed Residential Units with Balconies and Anticipated Upgrade Need

Structure	Floor(s)	Quantity of Anticipated Occupied Units (per Floor) with Usable Patios or Balconies Needing Acoustical Upgrade
Building 3	$2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$	Six (6) southern façade units that face Main Street West

Theprediction resulis from the preceding exterior noise analysis indicate that future traffic noise levels would range close to but hot exeeed 70 dBA GNEL. With the 45 dBA CNEL interior background sound level limit, this means the minimum composite STC rating for the exterior shell separating the habitable interior space from the outdoor sound level should be at least 25 .

4.2 Exterior Wall Components

The composite STC rating for the portion of a building shell that separates an interior space from the outdoors is calculated from the area-dependent contributions of its elements: windows, wall assemblies, and doors.

4.2.1 Windows

Windows are typically the weakest sound isolation element of residential buildings. The minimum performance window option in occupied rooms is assumed to be single hung operable windows with a minimum of dual-glazing. California's Title 24 (Title 24, Part 6 of the California Code of Regulations) stipulates energy efficiency of new residential and nonresidential buildings, with each local community adopting building codes to achieve compliance with these regulations. With regard to windows, the City of Chula Vista has adopted a thermal efficiency standard of a minimum U-factor of 0.58 (Chula Vista Municipal Code Sections 110.6, 150.0(q)), which can only be achieved with a minimum of dual-glazed window assemblies. Based on these Title 24 requirements and the Chula Vista Code, this analysis presumes such dual-paned vinyl windows will be used for this project. A glazing manufacturer, Viracon, reports that a dual pane assembly composed of two $1 / 8^{\prime \prime}$-thick glass panes separated by a $3 / 8^{\prime \prime}$ wide airgap yields an STC rating of 31 (Viracon 2019).

4.2.2 Exterior Wall Assembly

For purposes of this analysis, it is assumed that the exterior wall assembly with a " 1 -hour" fire rating serves as the primary component of the building shell and includes the following materials: one layer of $5 / 8$ " gypsum wallboard (GWB) on the interior-facing side, 2 " $\times 4$ " wood studs, and glass fiber batt insulation in the stud cavities. The exteriorside materials are either: a $7 / 8^{\prime \prime}$-thick exterior cement plaster attached to a weather-resistant barrier and wooden structural panels (that are attached to the studs), or fiber-cement siding attached to $5 / 8$ " GWB and underlying wooden structural panels (that are attached to the studs). For purposes of this analysis, and because acoustical test data was not found for these assemblies, it is assumed that each of these two types of exterior walls can be represented by an assembly featuring a dual-layer of $5 / 8^{\prime \prime}$ GWB on the exterior (i.e., a total GWB thickness of 1.25 "), 2 " $44^{\prime \prime}$ wooden studs, fiber batts in the stud cavities, and a single $5 / 8^{\prime \prime}$ GWB layer on the interior. Acoustical transmission loss (TL) data is available on this representative assembly (NRCC 1998), and because the dual-layer of GWB has mass considered comparable to either of the afore-stated Project exterior material assemblies for the two exterior wall types, this TL data is used as part of estimating the composite STC ratings as disclosed in Appendix C and with results summarized in Table 4.

4.2 .3

Many of the residentiat units feature patios or balconies, for which access is provided by single-panel, out-swing fiberglass french doors with hinges (i.e., not sliding) comparable to a Milgard Essence series model (or similar from another manufacturer). For purposes of this analysis, these doors are assumed to feature a dual-pane glazing system similar tothe window assembly (i.e., two $1 / 8$ "-thick glass panes separated by a $3 / 8$ " wide air-gap) in narrowperimeter frames. The analysis also assumes that these door products feature good seals and related hardware, so that when closed, the effective sound insulating performance is represented by the glass. Viracon data indicates that such glazing should demonstrate an STC rating of 31 (Viracon 2019).

4.2.4 Wall Composite

Table 4 summarizes the calculated net STC ratings for a set of studied occupied room facades that are anticipated to be exposed to predicted exterior noise levels greater than 60 dBA CNEL. Details of these calculations that account for the façade surface area and its composite areas of exterior wall assembly, windows and doors appear in Appendix C.

Clearly, an open window or open door to an adjoining patio or balcony greatly compromises the sound insulation performance of the façade wall assembly. However, when such windows and doors are closed, all facades are anticipated to exhibit a predicted STC rating of at least 35, and thus would provide sufficient exterior-to-interior sound insulation from outdoor traffic noise to yield interior background sound levels that are less than 45 dBA CNEL and thus compliant with the City and state standards. Recall that none of the predicted exterior traffic noise levels at the studied receptor locations exceeded 70 dBA CNEL; thus, the STC rating value (for closed windows and doors) subtracted from these exterior noise values must result in interior noise levels of less than 45 dBA CNEL (e.g., 70 $-35=35$ dBA CNEL, which is less than 45). This apparent requirement for closed windows and doors means that the design of these habitable rooms should feature mechanical ventilation or an air-conditioning system to provide interior comfort of the occupants.

Table 4. Predicted Net Sound Transmission Class of Occupied Room Facade

		Predicted Net Sound Transmission Class (STC) for Scenario		

[^0]
5 Recommendations

5.1 Extemon Noise

CITY OF

As discussed in Section B,annmber of upper-floor residential units will need their balconies acoustically upgraded in order to feduce outdodrneise exposure for seated occupants to a level less than 65 dBA CNEL. Consistent with the recommended mitigation approach on previous Otay Ranch multi-family residential projects, such as Otay Ranch Village 3 North "Escaya" (Dudek 2017), one technique to provide this identified noise reduction need on the order of approximately 5 dBA is the addition of a solid and sufficiently massive material layer to the planned squaretubed metal railings on the balcony usable area perimeter. As depicted in Figure 4, showing detail from a previously studied project (and thus used merely for illustration purposes), proposed installation of a 6-millimeter (0.236 inch) sheet of plexiglass (acrylic) on the interior-facing side of the balcony railing structure would be expected to yield an effective STC rating of at least 15. Although the material itself has an STC rating of 29 (Arkema Group 2019), the approximate 1 "-wide air gap between the bottom edge of the plexiglass panel and the balcony floor results in lower expected STC performance. In other words, the area of the gap as a fraction of the barrier material surface area causes the reduction in sound transmission loss performance. Other material options and designs are possible, subject to non-acoustical considerations such as desired barrier opacity, balcony deck drainage, etc., provided that the designed installation has barrier material having adequate mass and solidity, an approximate deck to top-edge height of 42 inches (3.5 feet), and with minimized air-gaps such as the sample appearing in Figure 4.

Sources: Humphreys 2019, Dudek 2022
Figure 4. Elevation view of a typical balcony railing, with the recommended 6-millimeter plexiglass element added for noise reduction

Also as disoussed in Section 3, for the Project first-floor patios, surrounding stucco walls should have a top edge height at least three feet (3') above local grade. The presence of these partial-height barriers, in conjunction with acoustioal ground absorption attributed to nearby turf-covered easements between the enclosed patio and the nearby roadway traffic noise source, should provide sufficient sound path occlusion to yield net noise level reduction for seated patio occupants.

No special recommendations are needed with respect to providing an interior background sound level that is 45 dBA CNEL or less from the intrusion of future outdoor traffic noise. So long as the following Project design features used in this analysis are represented in the final building designs, no additional noise reducing means are anticipated for the purpose of meeting this City and CBC standard for interior occupant comfort:

1. Air-conditioning or other forms of mechanical ventilation system are required for interior comfort and climate control of habitable rooms, since this analysis has determined that windows and patio doors within façades exposed to roadway traffic noise must be closed to ensure adequate exterior-to-interior sound insulation.
2. Windows should be double-paned with minimum $1 / 8$ "-thick glass lites separated by a $3 / 8$ "-deep air space.
3. Fiberglass french doors swing outward to the patios and balconies should also feature double-paned glazing like the above-mentioned windows (i.e., $1 / 8^{\prime \prime}$-thick glass lites separated by $3 / 8$ "-deep air cavity).
4. Exterior wall assemblies must feature, at a minimum:
a. 2 " $\times 4$ " wood studs, creating 4 "-deep cavities that should contain 2 " or 3"-thick fibrous insulation media of typical density and material type (glass or mineral);
b. single-layer gypsum wallboard (GWB, 5/8" thick) substrate attached to the wood studs on the interiorfacing side of the assembly; and,
c. on the exterior, either a $7 / 8$ "-thick plaster finish (and WRB) on wooden panels attached to the wood studs; cement siding atop a combination of $5 / 8$ "-thick GWB and wooden panels attached to the wood studs; or, an alternate material layer (or combination) that has comparable mass, density, and/or solidity such that it emulates a double-layer of GWB for purposes of sound insulation.

Dudek trusts that the results, findings, and recommendations presented in this letter report meet your needs for the Project at this time and represents appropriate completion of the approved scope of work. Should the City have comments on this report after its review, please let us know and we will address them at that time.

Sincerely,

Mark Storm, INCE Bd. Cert.
Acoustic Services Manager
mstorm@dudek.com

[^1]6.1

Arkema Groüp. 2019. hittps:/7www.plexiglas.com/export/sites/plexiglas/.content/medias/downloads/plexiglasU expert-pdff General-Product-Info-Plexiglas-Sound-Transmission.pdf

Chen Ryan. 2019. Village 8 West - Trip Generation Analysis and Internal ADT Estimation.

City of Chula Vista. 2005. "Noise Element." Chapter 9 in City of Chula Vista General Plan. December 13, 2005. https://www.chulavistaca.gov/home/showdocument?id=9339.

FHWA. 2004. FHWA Traffic Noise Model Version 2.5.
U.S. Department of Housing and Urban Development (HUD). 2009. "Noise Notebook: Chapter 4 Supplement." In Sound Transmission Class Guidance. March. https://www.hudexchange.info/onecpd/assets/File/Noise-Guidebook-Chapter-4-Supplement.pdf.

Humphreys \& Partners LLP. 2019. Village 8 West Parcels I and J. Chula Vista, CA. HomeFed Corporation. 10/07/19 Design Development Package.

NRCC (National Research Council of Canada). 1998. Gypsum Board Walls: Transmission Loss Data. IRC-IR-761. https://nrc-publications.canada.ca/eng/view/fulltext/?id=04ac8069-a5d2-4038-8787-da064b073e7f.

OPR (Governor's Office of Planning and Research). 2017. State of California 2017 General Plan Guidelines. http://www.opr.ca.gov/docs/OPR_COMPLETE_7.31.17.pdf.

Viracon. 2019. http://www.viracon.com/pdf/ViraconAcousticPerfDataTables.pdf.

Decibel (dB)

Equivalent Sound Level (Leq)

Octave Band Center Frequency (OBCF)

Sound Transmission Loss (TL)

Sound Transmission Class (STC)

The composite of noise from all sources near and far. The normal or existing level of environmental noise at a given location.

The sound pressure level (SPL) in decibels as measured on a sound level meter (SLM) using the A-weighted filter network. The A-weighting filter de-emphasizes the very low and very high frequency components of the measured sound in a manner similar to the frequency response of the average healthy human ear, and thus correlates well with assessment of environmental noise in a community setting where noise-sensitive receptors may be present.

The unit for expressing SPL and is equal to 10 times the logarithm (to the base 10) of the ratio of the measured sound pressure squared to a reference pressure, which is 20 micropascals.

The value corresponding to a steady-state sound level containing the same total energy as a time-varying signal over a given sample period. TAV is designed to average all of the loud and quiet sound levels occurring over a time period.

Commonly discussed octave frequency bands are: 31.5 Hz, $63 \mathrm{~Hz}, 125 \mathrm{~Hz}, 250 \mathrm{~Hz}, 500 \mathrm{~Hz}, 1 \mathrm{kHz}, 2 \mathrm{kHz}, 4 \mathrm{kHz}$, 8 kHz and 16 kHz . Each of these "center frequencies" represents an octave band defined by a lower band limit equal to 0.707 times the center frequency, and an upper band limit equal to 1.414 times the center frequency.

The amount of sound, in decibels (dB), that is isolated by a material or partition in a particular octave or $1 / 3$ octave frequency band. Example: 1/2" drywall has a TL at 125 Hz of $15 \mathrm{~dB} .{ }^{1}$

A single-number rating that can be used to conveniently compare, acoustical isolation properties of different materials or assemblies. Generally, higher numbers indicate a material will provide more sound insulation when used as a barrier. Plotted against standardized STC curves, with established curve-fit tolerances, the TL of a material (in dB) at 500 Hz serves as the STC rating.

[^2]

INPUT: ROADWAYS

INPUT: TRAFFIC FOR LAeq1h Volumes

	point24	24	1077	40	22	40	22	40	0	0	0	0
	point25	25	1077	40	22	40	22	40	0	0	0	0
A Ml)	point26	26	1077	40	22	40	22	40	0	0	0	0
$\square \longrightarrow$	point27	27	1077	40	22	40	22	40	0	0	0	0
	point28	28	1077	40	22	40	22	40	0	0	0	0
-	point29	29	1077	40	22	40	22	40	0	0	0	0
	point30	30	1077	40	22	40	22	40	0	0	0	0
CITYOF	point31	31	1077	40	22	40	22	40	0	0	0	0
	point32	32	1077	40	22	40	22	40	0	0	0	0
	point33	33	1077	40	22	40	22	40	0	0	0	0
	point34	34										
Main Street West	point35	35	1077	40	22	40	22	40	0	0	0	0
	point36	36	1077	40	22	40	22	40	0	0	0	0
	point37	37	1077	40	22	40	22	40	0	0	0	0
	point38	38	1077	40	22	40	22	40	0	0	0	0
	point39	39	1077	40	22	40	22	40	0	0	0	0
	point40	40	1077	40	22	40	22	40	0	0	0	0
	point41	41	1077	40	22	40	22	40	0	0	0	0
	point42	42	1077	40	22	40	22	40	0	0	0	0
	point43	43	1077	40	22	40	22	40	0	0	0	0
	point44	44	1077	40	22	40	22	40	0	0	0	0
	point45	45	1077	40	22	40	22	40	0	0	0	0
	point46	46	347	40	22	40	22	40	0	0	0	0
	point47	47	1077	40	22	40	22	40	0	0	0	0
	point48	48										
La Media North n2	point49	49	912	40	19	40	19	40	0	0	0	0
	point50	50	912	40	19	40	19	40	0	0	0	0
	point51	51	912	40	19	40	19	40	0	0	0	0
	point52	52										
La Media North n1	point53	53	912	40	19	40	19	40	0	0	0	0
	point54	54	912	40	19	40	19	40	0	0	0	0
	point55	55	912	40	19	40	19	40	0	0	0	0
	point56	56										
Main Street West W1	point57	57	1077	40	22	40	22	40	0	0	0	0
	point58	58										
Main Street West W	point59	59	1077	40	22	40	22	40	0	0	0	0

CHULAVIITA

<Organization?> <Analysis By? >	2 February 2022 TNM 2.5													
PROJECT/GONTRACT: RUN:	<Project Name?> <Run Title?>													
Name	No.	\#DUs	Coordinates (ground)				Height above Ground	Input Sound Levels and Criteria						Active in Calc.
			X	Y Z	Z			Existing LAeq1h	Impact Criteria			NR		
									LAeq1h	Sub'		Goal		
			ft	t	ft		ft	dBA	dBA	dB		dB		
M4-1-1	1	1	6,337,192.5	1,800,882.9		473.00	4.92	0.00	66		10.0		8.0	Y
M4-1-2	2	1	6,337,192.5	1,800,882.9		473.00	14.92	0.00	66		10.0		8.0	Y
M4-1-3	3	1	6,337,192.5	1,800,882.9		473.00	24.92	0.00	66		10.0		8.0	Y
M4-1-4	4	1	6,337,192.5	1,800,882.9		473.00	34.92	0.00	66		10.0		8.0	Y
M4-2-1	5	1	6,337,372.0	1,800,946.5		475.00	4.92	0.00	66		10.0		8.0	Y
M4-2-2	6	1	6,337,372.0	1,800,946.5		475.00	14.92	0.00	66		10.0		8.0	Y
M4-2-3	7	1	6,337,372.0	1,800,946.5		475.00	24.92	0.00	66		10.0		8.0	Y
M4-2-4	8	1	6,337,372.0	1,800,946.5		475.00	34.92	0.00	66		10.0		8.0	Y
M3-1-1	9	1	6,337,588.5	1,801,009.6		480.00	4.92	0.00	66		10.0		8.0	Y
M3-1-2	10	1	6,337,588.5	1,801,009.6		480.00	14.92	0.00	66		10.0		8.0	Y
M3-1-3	11	1	6,337,588.5	1,801,009.6		480.00	24.92	0.00	66		10.0		8.0	Y
M3-1-4	12	1	6,337,588.5	1,801,009.6		480.00	34.92	0.00	66		10.0		8.0	Y
M4-3-1	13	1	6,337,122.5	1,801,004.2		473.00	4.92	0.00	66		10.0		8.0	Y
M4-3-2	14	1	6,337,122.5	1,801,004.2		473.00	14.92	0.00	66		10.0		8.0	Y
M4-3-3	15	1	6,337,122.5	1,801,004.2		473.00	24.92	0.00	66		10.0		8.0	Y
M4-3-4	16	1	6,337,122.5	1,801,004.2		473.00	34.92	0.00	66		10.0		8.0	Y
M5-1-1	17	1	6,337,040.0	1,801,069.6		470.00	4.92	0.00	66		10.0		8.0	Y
M5-1-2	18	1	6,337,040.0	1,801,069.6		470.00	14.92	0.00	66		10.0		8.0	Y
M5-1-3	19	1	6,337,040.0	1,801,069.6		470.00	24.92	0.00	66		10.0		8.0	Y
M5-1-4	20	1	6,337,040.0	1,801,069.6		470.00	34.92	0.00	66		10.0		8.0	Y
M5-2-1	21	1	6,337,009.0	1,801,196.1		470.00	4.92	0.00	66		10.0		8.0	Y
M5-2-2	22	1	6,337,009.0	1,801,196.1		470.00	14.92	0.00	66		10.0		8.0	Y

INPUT: RECEIVERS					<Project Name?>						
M5-2-3	23	1	6,337,009.0	1,801,196.1	470.00	24.92	0.00	66	10.0	8.0	Y
M5-2-4	24	1	6,337,009.0	1,801,196.1	470.00	34.92	0.00	66	10.0	8.0	Y
OS-1	25	1	6,337,059.0	1,801,309.6	470.00	4.92	0.00	66	10.0	8.0	Y
OS-2	26	1	6,336,958.0	1,801,205.2	470.00	4.92	0.00	66	10.0	8.0	Y
M3-2-1	27	1	6,337,734.0	1,801,119.4	480.00	4.92	0.00	66	10.0	8.0	Y
M3-2-2	28	1	6,337,734.0	1,801,119.4	480.00	14.92	0.00	66	10.0	8.0	Y
M3-2-3	29	1	6,337,734.0	1,801,119.4	480.00	24.92	0.00	66	10.0	8.0	Y
M3-2-4 CITY OF	30	1	6,337,734.0	1,801,119.4	480.00	34.92	0.00	66	10.0	8.0	Y

CHULAVIITA

<Project Name?>

C:ITNM25\Projects\Parcel ClCaI

<Project Name?>

<Project Name?>

<Project Name?>

C:ITNM25\Projects\Parcel ClCaI

<Project Name?>

2 February 2022

<Project Name?>

C:ITNM25\Projects\Parcel ClCal

<Project Name?>

Calculated with TNM 2.5
RESULTS: SOUND LEVELS
PROJECT/CONTRACT: <Project Name?>

RUN:

BARRIER DESIGN:
CITY OF
atmospritilis: :A VISTA
<Run Title?>
INPUT HEIGHTS

68 deg F, 50\% RH

C:ITNM25\Projects\Parcel ClCal

Average pavement type shall be used unless
a State highway agency substantiates the use of a different type with approval of FHWA.

 CITY OF CHULA VISTA:

available TL data for comparable assembly: Viracon $5 / 8^{\prime \prime}$ overall $-1 / 8$ " glass $+3 / 8$ " airspace $+1 / 8$ " glass

$\begin{array}{rr}\text { enter desired STC value } & 35 \\ \text { sum of negative differentials } & -10\end{array}$

Unit A2, Living Room with Open Door
gty width height

material or element \#2	3	3	7
material or element \#3	0	0	0
material or element \#4	1	3	8
total surface		17	9

TL Data Source
NRC-CNRC IC-IR-761 (p. 25: G16_WS90(406)_MFB90_2G16) $2 \times 5 / 8^{\prime \prime}$ GWB, 2 " $\times 4$ " wood, $24^{" ~ o . c ., ~ f i b e r ~ b a t t ~ f i l l, ~} 1 \times 5 / 8^{\prime \prime}$ GWB
available TL data for comparable assembly:
Viracon $5 / 8^{\prime \prime}$ overall $-1 / 8^{\prime \prime}$ glass $+3 / 8^{\prime \prime}$ airspace $+1 / 8^{\prime \prime}$ glass
available TL data for comparable assembly: Viracon $5 / 8^{\prime \prime}$ overall $-1 / 8^{\prime \prime}$ glass $+3 / 8^{\prime \prime}$ airspace $+1 / 8^{\prime \prime}$ glass
$\begin{array}{rr}\text { enter desired STC value } & 8 \\ \text { sum of negative differentials } & -11\end{array}$

Unit A2, Living Room with Open Window

	gty	idth	height
material or element\#1			
material or element \#2	3	3	6.167
material or element \#3	1	3	8
material or element \#4	1	3	2.5
total surface		17	9

TL Data Source
NRC-CNRC IC-IR-761 (p. 25: G16_WS90(406)_MFB90_2G16) $2 \times 5 / 8^{\prime \prime}$ GWB, $2^{\prime \prime} \times 4^{\prime \prime}$ wood, $24^{\prime \prime}$ o.c., fiber batt fill, $1 \times 5 / 8^{\prime \prime}$ GWB
available TL data for comparable assembly: Viracon $5 / 8^{\prime \prime}$ overall $-1 / 8^{\prime \prime}$ glass $+3 / 8$ " airspace $+1 / 8$ " glass
available TL data for comparable assembly: Viracon $5 / 8^{\prime \prime}$ overall $-1 / 8$ " glass $+3 / 8$ " airspace $+1 / 8$ " glass
enter desired STC value $\quad 13$
35 = approx. STC

Square feet
exterior wall assembly
vinyl window (dual pane)
french door glazing (dual pane)
opening
arbitrary total surface area
Octave Band Center Frequency (OBCF, Hz)
exterior wall assembly
material \#1 τ
vinyl window (dual pane) material \#2

french door glazing (dual pane)	23	23	27	35	47	36
material \#3 τ	0.00501	0.00501	0.002	0.00032	$2 \mathrm{E}-05$	0.00025

opening
material \#4
composite TL
prospective STC curve differentials

0	0	0	0	0	0
1	1	1	1	1	1

19	25	29	37	45	38
19	28	35	38	39	39
0	-3	-6	-1	6	-1

8 = approx. STC

Square feet						
$\begin{aligned} & 66 \\ & 63 \end{aligned}$	exterior wall assembly					
	vinyl window (dual pane)					
0	french door glazing (dual pane)					
24	opening					
153	arbitrary total surface area					
	Octave Band Center Frequency (OBCF, Hz)					
	125	250	500	1000	2000	4000
exterior wall assembly	16	40	41	48	43	52
material \#1 τ	0.02512	0.0001	7.9E-05	1.6E-05	$5 \mathrm{E}-05$	6.3E-06
vinyl window (dual pane)	23	23	27	35	47	36
material \#2 τ	0.00501	0.00501	0.002	0.00032	$2 \mathrm{E}-05$	0.00025
french door glazing (dual pane) material \#3 τ	23	23	27	35	47	36
	0.00501	0.00501	0.002	0.00032	$2 \mathrm{E}-05$	0.00025
opening	0	0	0	0	0	0
material \#4 τ	11		11		1	1
composite TL	8	8	8	8	8	8
prospective STC curve	-8	1	8	11	12	12
differentials	16	7	0	-3	-4	-4
	13 = approx. STC					
Square feet						
65.997	exterior wall assembly					
55.503	vinyl window (dual pane)					
24	french door glazing (dual pane)					
7.5	opening					
153	arbitrary total surface area					
	Octave Band Center Frequency (OBCF, Hz)					
exterior wall assembly	125	250	500	1000	2000	4000
	16	40	41	48	43	52
material \#1 τ	0.02512	0.0001	7.9E-05	1.6E-05	5E-05	6.3E-06
vinyl window (dual pane)material \#2 τ	23	23	27	35	47	36
	0.00501	0.00501	0.002	0.00032	2E-05	0.00025
french door glazing (dual pane)	23	23	27	35	47	36
material \#3 τ	0.00501	0.00501	0.002	0.00032	2E-05	0.00025

opening

0	0	0	0	0	0
1	1	1	1	1	1

composite TL
prospective STC curve
differentials

12
13
16

available TL data for comparable assembly: Viracon $5 / 8^{\prime \prime}$ overall $-1 / 8$ " glass $+3 / 8$ " airspace $+1 / 8$ " glass

$$
\begin{array}{rlr}
\text { enter desired STC value } & 35 \\
\hline \text { sum of negative differentials } & -8
\end{array}
$$

Unit A2, Bedroom with Open Window

NRC-CNRC IC-IR-761 (p. 25: G16_WS90(406)_MFB90_2G16) $2 \times 5 / 8^{\prime \prime}$ GWB, 2 " $\times 4^{\prime \prime}$ wood, $24^{\prime \prime}$ o.c., fiber batt fill, $1 \times 5 / 8^{\prime \prime}$ GWB
available TL data for comparable assembly: Viracon $5 / 8^{\prime \prime}$ overall $-1 / 8^{\prime \prime}$ glass $+3 / 8^{\prime \prime}$ airspace $+1 / 8^{\prime \prime}$ glass
available TL data for comparable assembly: Viracon $5 / 8^{\prime \prime}$ overall $-1 / 8^{\prime \prime}$ glass $+3 / 8^{\prime \prime}$ airspace $+1 / 8^{\prime \prime}$ glass
$\begin{array}{rrr}\text { enter desired STC value } & 11 \\ \text { sum of negative differentials } & -12\end{array}$
35 = approx. STC
Square feet
exterior wall assembly
vinyl window (dual pane)
french door glazing (dual pane)
opening
arbitrary total surface area
Octave Band Center Frequency (OBCF, Hz)

exterior wall assembly material \#1 τ	125	250	500	1000	2000	4000
	16	40	41	48	43	52
	0.02512	0.0001	7.9E-05	1.6E-05	5E-05	6.3E-06
vinyl window (dual pane) material \#2 τ	23	23	27	35	47	36
	0.00501	0.00501	0.002	0.00032	$2 \mathrm{E}-05$	0.00025
french door glazing (dual pane) material \#3 τ	23	23	27	35	47	36
	0.00501	0.00501	0.002	0.00032	$2 \mathrm{E}-05$	0.00025
openingmaterial \#4 τ	0	0	0	0	0	0
	1	1	1	1	1	1
composite TL	18	26	30	38	44	39
prospective STC curve	19	28	35	38	39	39
differentials	-1	-2	-5	0	5	0
				= approx.		
Square feet						
48	exterior wall assembly					
34.5	vinyl window (dual pane)					
0	french door glazing (dual pane)					
7.5	opening					
90	arbitrary total surface area					
	Octave Band Center Frequency (OBCF, Hz)					
exterior wall assemblymaterial \#1 τ	125	250	500	1000	2000	4000
	16	40	41	48	43	52
	0.02512	0.0001	7.9E-05	1.6E-05	5E-05	6.3E-06
vinyl window (dual pane)material \#2 τ	23	23	27	35	47	36
	0.00501	0.00501	0.002	0.00032	$2 \mathrm{E}-05$	0.00025
french door glazing (dual pane) material \#3 τ	23	23	27	35	47	36
	0.00501	0.00501	0.002	0.00032	$2 \mathrm{E}-05$	0.00025
opening material \#4 τ	0	0	0	0	0	0
	1	1	1	1	1	1
composite TL	10	11	11	11	11	11
prospective STC curve	-5	4	11	14	15	15
differentials	15	7	0	-3	-4	-4

available TL data for comparable assembly: Viracon $5 / 8^{\prime \prime}$ overall $-1 / 8^{\prime \prime}$ glass $+3 / 8$ " airspace $+1 / 8$ " glass

$$
\begin{array}{rlr}
\text { enter desired STC value } & 35 \\
\text { sum of negative differentials } & -8
\end{array}
$$

Unit B2, Bedroom with Open Window

	gty	width	height
material or element \#1			
material or element \#2	2	3	5.75
material or element \#3	0	0	0
material or element \#4	1	3	2.5
total surface		10	9
	TL Data Source		

NRC-CNRC IC-IR-761 (p. 25: G16_WS90(406)_MFB90_2G16) $2 \times 5 / 8^{\prime \prime}$ GWB, 2 " $\times 4^{4 "}$ wood, $24^{" ~ o . c ., ~ f i b e r ~ b a t t ~ f i l l, ~} 1 \times 5 / 8^{\prime \prime}$ GWB
available TL data for comparable assembly: Viracon $5 / 8^{\prime \prime}$ overall $-1 / 8^{\prime \prime}$ glass $+3 / 8^{\prime \prime}$ airspace $+1 / 8^{\prime \prime}$ glass
available TL data for comparable assembly: Viracon $5 / 8^{\prime \prime}$ overall $-1 / 8^{\prime \prime}$ glass $+3 / 8^{\prime \prime}$ airspace $+1 / 8^{\prime \prime}$ glass
$\begin{array}{rrr}\text { enter desired STC value } & 11 \\ \text { sum of negative differentials } & -12\end{array}$
35 = approx. STC
Square feet
exterior wall assembly
vinyl window (dual pane)
french door glazing (dual pane)
opening
arbitrary total surface area

125	250	500	1000	2000	4000
16	40	41	48	43	52
0.02512	. 001	05	-05	E-05	E-06

vinyl window (dual pane) material \#2 τ

23	23	27	35	47	36
0.00501	0.00501	0.002	0.00032	$2 \mathrm{E}-05$	0.00025

french door glazing (dual pane) $\begin{array}{llllllll}\text { material \#3 } \tau & 0.00501 & 0.00501 & 0.002 & 0.00032 & 2 \mathrm{E}-05 & 0.00025\end{array}$ material \#4 τ

0	0	0	0	0	0
1	1	1	1	1	1

composite TL
prospective STC curve differentials

18	26	30	38	44	39
19	28	35	38	39	39
-1	-2	-5	0	5	0

11 = approx. STC
exterior wall assembly
vinyl window (dual pane)
french door glazing (dual pane)
opening

125	$\underline{250}$		1000				$\underline{2000}$		$\underline{4000}$
16	40	41	48	43	52				
0.02512	0.0001	$7.9 \mathrm{E}-05$	$1.6 \mathrm{E}-05$	$5 \mathrm{E}-05$	$6.3 \mathrm{E}-06$				

23	23	27	35	47	36
0.00501	0.00501	0.002	0.00032	$2 \mathrm{E}-05$	0.00025

french door glazing (dual pane) material \#3 τ

	0	0	0	0	0	
opening	0	0	0	0	1	1

composite TL	10	11	11	11	11	11

$\begin{array}{rrrrrrr}\text { prospective STC curve } & -5 & 4 & 11 & 14 & 15 & 15 \\ \text { differentials } & 15 & 7 & 0 & -3 & -4 & -4\end{array}$

 CITY OF CHULA VISTA:

available TL data for comparable assembly: Viracon $5 / 8^{\prime \prime}$ overall $-1 / 8$ " glass $+3 / 8$ " airspace $+1 / 8$ " glass

$\begin{array}{rr}\text { enter desired STC value } & 35 \\ \text { sum of negative differentials } & -10\end{array}$

Unit B2, Living Room with Open Door
gty width height

material or element \#2	3	3	7
material or element \#3	0	0	0
material or element \#4	1	3	8
total surface		17	9

TL Data Source
NRC-CNRC IC-IR-761 (p. 25: G16_WS90(406)_MFB90_2G16) $2 \times 5 / 8^{\prime \prime}$ GWB, 2 " $\times 4$ " wood, $24^{" ~ o . c ., ~ f i b e r ~ b a t t ~ f i l l, ~} 1 \times 5 / 8^{\prime \prime}$ GWB
available TL data for comparable assembly:
Viracon $5 / 8^{\prime \prime}$ overall $-1 / 8^{\prime \prime}$ glass $+3 / 8^{\prime \prime}$ airspace $+1 / 8^{\prime \prime}$ glass
available TL data for comparable assembly: Viracon $5 / 8^{\prime \prime}$ overall $-1 / 8^{\prime \prime}$ glass $+3 / 8^{\prime \prime}$ airspace $+1 / 8^{\prime \prime}$ glass

Unit B2, Living Room with Open Window

	gty	idth	height
material or element\#1			
material or element \#2	3	3	6.167
material or element \#3	1	3	8
material or element \#4	1	3	2.5
total surface		17	9

TL Data Source
NRC-CNRC IC-IR-761 (p. 25: G16_WS90(406)_MFB90_2G16) $2 \times 5 / 8^{\prime \prime}$ GWB, 2 " $\times 4^{\prime \prime}$ wood, $24^{\prime \prime}$ o.c., fiber batt fill, $1 \times 5 / 8$ " GWB (plus 5 dB for add'I GWB mass and insulation in cavity)

Viracon $5 / 8^{\prime \prime}$ overall $-1 / 8^{\prime \prime}$ glass $+3 / 8^{\prime \prime}$ airspace $+1 / 8^{\prime \prime}$ glass
available TL data for comparable assembly: Viracon $5 / 8^{\prime \prime}$ overall $-1 / 8$ " glass $+3 / 8$ " airspace $+1 / 8$ " glass
enter desired STC value $\quad 13$
35 = approx. STC

Square feet
exterior wall assembly
vinyl window (dual pane)
french door glazing (dual pane)
opening
arbitrary total surface area
Octave Band Center Frequency (OBCF, Hz)
exterior wall assembly
material \#1 τ
vinyl window (dual pane) material \#2 τ

french door glazing (dual pane)	23	23	27	35	47	36
material \#3 τ	0.00501	0.00501	0.002	0.00032	$2 \mathrm{E}-05$	0.00025

opening
material \#4
composite TL
prospective STC curve differentials

0	0	0	0	0	0
1	1	1	1	1	1

66
63 vinis
french door gazing (dual
opening
arbitrary total surface area
Octave Band Center Frequency (OBCF, Hz)

exterior wall assembly | 16 | 40 | 41 | 48 | 43 | 52 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0.02512 | 0.001 | $7.9 E-05$ | $1.6 E-05$ | $5 E-05$ | $6.3 E-0$ |

$\begin{array}{r} 66 \\ 63 \\ 0 \\ 24 \\ 153 \end{array}$	exterior wall assembly					
	vinyl window (dual pane)					
	french door glazing (dual pane)					
	opening					
	arbitrary total surface area					
	Octave Band Center Frequency (OBCF, Hz)					
	125	250	500	1000	2000	4000
exterior wall assembly material \#1 τ	16	40	41	48	43	52
	0.02512	0.0001	7.9E-05	$1.6 \mathrm{E}-05$	5E-05	6.3E-06
vinyl window (dual pane) material \#2 τ	23	23	27	35	47	36
	0.00501	0.00501	0.002	0.00032	2E-05	0.00025
french door glazing (dual pane) material \#3 τ	23	23	27	35	47	36
	0.005010 .00501		0.0020 .00032		$2 \mathrm{E}-050.00025$	
opening	0	0	0	0	0	0
material \#4 τ	1		$1 \quad 1$		11	
composite TL	8	8	8	8	8	8
prospective STC curve	-8	1	8	11	12	12
differentials	16	7	0	-3	-4	-4
	13 = approx. STC					
Square feet						
65.997	exterior wall assembly					
55.503	vinyl window (dual pane)					
24	french door glazing (dual pane)					
7.5	opening					
153	arbitrary total surface area					
	Octave Band Center Frequency (OBCF, Hz)					
exterior wall assembly material \#1 τ	125	$\underline{250}$	500	1000	2000	4000
	16	40	41	48	43	52
	0.02512	0.0001	7.9E-05	1.6E-05	5E-05	6.3E-06
vinyl window (dual pane)	23	23	27	35	47	36
material \#2 τ	0.00501	0.00501	0.002	0.00032	$2 \mathrm{E}-05$	0.00025
french door glazing (dual pane)	23	23	27	35	47	36
material \#3 τ	0.00501	0.00501	0.002	0.00032	2E-05	0.00025

french door glazing (dual pane)						
$\begin{aligned} \text { material }\end{aligned} \# 3 \tau$	23	23	27	35	47	36

$\begin{array}{r} 66 \\ 63 \\ 0 \\ 24 \\ 153 \end{array}$	exterior wall assembly					
	vinyl window (dual pane)					
	french door glazing (dual pane)					
	opening					
	arbitrary total surface area					
	Octave Band Center Frequency (OBCF, Hz)					
	125	250	500	1000	2000	4000
exterior wall assembly material \#1 τ	16	40	41	48	43	52
	0.02512	0.0001	7.9E-05	$1.6 \mathrm{E}-05$	5E-05	6.3E-06
vinyl window (dual pane) material \#2 τ	23	23	27	35	47	36
	0.00501	0.00501	0.002	0.00032	2E-05	0.00025
french door glazing (dual pane) material \#3 τ	23	23	27	35	47	36
	0.005010 .00501		0.0020 .00032		$2 \mathrm{E}-050.00025$	
opening	0	0	0	0	0	0
material \#4 τ	1		$1 \quad 1$		11	
composite TL	8	8	8	8	8	8
prospective STC curve	-8	1	8	11	12	12
differentials	16	7	0	-3	-4	-4
	13 = approx. STC					
Square feet						
65.997	exterior wall assembly					
55.503	vinyl window (dual pane)					
24	french door glazing (dual pane)					
7.5	opening					
153	arbitrary total surface area					
	Octave Band Center Frequency (OBCF, Hz)					
exterior wall assembly material \#1 τ	125	$\underline{250}$	500	1000	2000	4000
	16	40	41	48	43	52
	0.02512	0.0001	7.9E-05	1.6E-05	5E-05	6.3E-06
vinyl window (dual pane)	23	23	27	35	47	36
material \#2 τ	0.00501	0.00501	0.002	0.00032	$2 \mathrm{E}-05$	0.00025
french door glazing (dual pane)	23	23	27	35	47	36
material \#3 τ	0.00501	0.00501	0.002	0.00032	2E-05	0.00025

prospective STC curve differentials

Square feet
65.997 503

24	
7.5	fr

3

19	25	29	37	45	38
19	28	35	38	39	39
0	-3	-6	-1	6	-1

8 = approx. STC
opening

0	0	0	0	0	0
1	1	1	1	1	1

[^0]: n/a = not applicable

[^1]: Connor Burke, INCE Environmental Specialist cburke@dudek.com

[^2]: 1 https://www.sweetwater.com/insync/sound-transmission-loss/

